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Abstract

are beneficial for selector-less crossbar memory arrays.

Post-metal annealing temperature-dependent forming-free resistive switching memory characteristics, Fowler-Nordheim
(F-N) tunneling at low resistance state, and after reset using a new W/WQOs/WO,/W structure have been investigated
for the first time. Transmission electron microscope image shows a polycrystalline WO5/WO, layer in a device with a
size of 150 x 150 nm?. The composition of WOs/WO, is confirmed by X-ray photo-electron spectroscopy. Non-linear
bipolar resistive switching characteristics have been simulated using space-charge limited current (SCLC) conduction
at low voltage, F-N tunneling at higher voltage regions, and hopping conduction during reset, which is well fitted with
experimental current-voltage characteristics. The barrier height at the WO,/W interface for the devices annealed at

500 °C is lower than those of the as-deposited and annealed at 400 °C (0.63 vs. 1.03 eV). An oxygen-vacant conducting
filament with a diameter of ~34 nm is formed/ruptured into the WOs/WO, bilayer owing to oxygen ion migration
under external bias as well as barrier height changes for high-resistance to low-resistance states. In addition, the
switching mechanism including the easy method has been explored through the current-voltage simulation. The
devices annealed at 500 °C have a lower operation voltage, lower barrier height, and higher non-linearity factor, which
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Background

Recently, resistive random access memory (RRAM)
has become a promising candidate to replace three-
dimensional FLASH for crossbar applications at a low
cost owing to its simple structure, low power consump-
tion, and high-speed operation [1-4]. Although different
switching materials such as Ta,Os [5-7], HfO, [8, 9], TiO,
[10-12], and Al,O3 [13-15] have been reported, however,
only a few studies have been reported on WOj3 material
[16, 17]. WO3 has an acceptable energy gap of 3.25 eV
[18] and Gibbs free energy of approximately —529 kJ/mol
at 300 K [19]. Chien et al. [16] reported that the Frenkel
effect modified the space-charge limited current (SCLC)
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in a W/WO,/TIN structure. Biju et al. [17] reported
Schottky emission in low field and Poole-Frankel in high
field in a Pt/WO3/W structure. Although different struc-
tures have been reported to amplify the RRAM charac-
teristics, its temperature-dependent non-linear switching
characteristics and mechanism are still unclear [20]. In
this regard, the current transport mechanism is one of the
key factors in understanding the resistive switching behav-
ior. Many authors have proposed different structures in
the current conduction mechanism [21-23]. The barrier
height in between the switching material and the electrode
can control the interfacial-type bipolar characteristics
[5, 21]. On the other hand, non-linear resistive switch-
ing characteristics are useful for reducing the sneak
path in crossbar architecture, which can be solved using
a complementary structure [7, 24] or selector [25]. If the
RRAM device shows non-linearity without a selector, then
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the above issue can be solved in an easy way. Although
many structures with different transport mechanism have
been reported, a simple W/WO3/WO,/W RRAM device
in the same material has not been reported yet. Non-
linear forming-free bipolar resistive switching character-
istics using a simple W/WO3/WO,/W structure are
observed for as-deposited, 400 °C, and 500 °C annealed
devices. A polycrystalline WO3/WO, layer is confirmed
by both high-resolution transmission electron micro-
scope (HRTEM) images and X-ray photo-electron spec-
troscope (XPS) spectra. Temperature-dependent SCLC
characteristics at low voltage and Fowler-Nordheim (F-N)
tunneling at high voltage for both low-resistance state
(LRS) and high-resistance state (HRS) are observed, even
after reset. The switching mechanism is explained by
oxygen-vacant conducting filament (CF) formation/
rupture into the WO3;/WO, bilayer, and a new method of
current-voltage (I-V) simulation is explored. Compared to
other memory devices, the devices annealed at 500 °C
have higher non-linearity factor, lower operation voltage,
and lower barrier heights.

Methods
First, a Si wafer was cleaned by the standard Radio
Corporation of America (RCA) process. Then, a 200-nm-
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thick SiO, was grown by a thermal oxidation method. A
200-nm-thick tungsten (W) as a bottom electrode (BE)
was deposited on the SiO,/Si substrate. Then, a SiO, layer
with a thickness of approximately 150 nm was deposited
by physical vapor deposition method for via-hole patterns.
A small via hole with a size of 150 x 150 nm?* was formed
by a standard photo-lithography process. Then, the WO3
layer was deposited by rf sputtering. After that, a WO,
layer was deposited, and lastly, W top electrode (TE) was
deposited using the same rf sputtering system. The pres-
sure of the sputtering chamber was kept at 10 mTorr
during deposition, and the deposition power was 100 W.
The flow rate of argon (Ar) gas was 25 sccm during de-
position of W TE. By controlling the oxygen (O,) flow rate
with Ar flow, the WOj3 layer with a thickness of 4 nm on
the BE and the WO layer with a thickness of 5 nm on the
WO; layer were deposited. For the WOj3 layer, 70 % oxy-
gen is used whereas 30 % oxygen is used for the WO,
layer. Finally, a lift-off process was performed to obtain the
RRAM devices. These devices were post-metal annealed
(PMA) at 400 °C (S2) and 500 °C (S3) for 10 min in ambi-
ent N,. These annealed devices were compared with the
as-deposited one (S1). A schematic view of a RRAM device
is shown in Fig. 1a. Memory characteristics were measured
by an Agilent 4156C semiconductor parameter analyzer.

Fig. 1 a Schematic view of a W/WOs/WO,/W resistive switching memory device. b TEM image shows 150 x 150 nm? devices. ¢ HRTEM image
confirms the WO3/WO, layer. The crystalline WO5; and WO, layers with d-spacing are shown inset
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The sweep voltage was applied on the TE, whereas the BE
was grounded during the measurement.

Results and Discussion

Figure 1b shows a TEM image of a RRAM device with a
via-hole size of 150 x 150 nm> A WOj; switching layer
of S1 device with a thickness of an approximately 4-nm
layer is shown on the W BE (Fig. 1c). The oxygen-deficient
layer, i.e, WO,, with a thickness of approximately 5 nm
was deposited. Due to the similar material of the WO,/W
TE, an interface was not observed. The WO3/ WO,
layer was polycrystalline. The polycrystalline grain size
will be increased with annealing temperature. Ottaviano
et al. [26] reported that the crystallite size of 5-nm-
thick WO3 changes from 26 to 35 nm due to annealing
from 350 to 500 °C. The polycrystalline WO3 layer had
a d-spacing value of 3.8 A, which was similar to the
reported value of 3.835 A for the (002) WO, layer [27].
The measured value of d-spacing of WO, was 4.7 A,
which was the same to the reported value of WO,
(4.7 A, [28]). The presence of the WO and WO, layers
was also confirmed by XPS analysis (Fig. 2). Two posi-
tions marked (1) and (2) were leveled on the HRTEM
image in Fig. 1c, which were obtained from the XPS
depth profile of the W TE/WO,/WO3/W BE sample.
By etching layer by layer from the sample surface, the
XP spectra were measured. The binding energy peaks
centered at 31.6 and 33.8 eV corresponded to the W f;/»
and W f5,,, respectively, whereas the peaks centered at
35.9 and 38.1 eV corresponded to the WOs f;/, and WO;3
f52 core-level electrons, respectively. Those peaks were
also confirmed by Kawasaki et al. [29]. It was observed
that the WOj; intensity at the marked region (1) was
stronger than that of the peak at the marked region (2).
The atomic percentages of WO3; and W were found to be
57.33 and 42.66 % at the marked region (1), respectively,
whereas those values were 23.52 and 7643 % at the
marked region (2), respectively. Therefore, marked region
(1) was an oxygen-rich layer, i.e., the WOj3 layer, whereas
marked region (2) was an oxygen-deficient layer, i.e., the
WO, layer. The resistive switching characteristics of
WO3/WO, bilayer have been explained below.

Figure 3 shows the I-V characteristics of the S1, S2,
and S3 devices under a current compliance (CC) of
500 pA. The voltages of the S1, S2, and S3 devices were
set at 4.5, 5.5, and 3.6 V, respectively, and the reset volt-
ages were -2.5, —2.9, and -2.35 V, respectively. These
devices were forming free, i.e., the first cycle (on pristine
device) is almost similar to the next cycles [30]. During
set, the oxygen ions were migrated from the WOj; layer
by breaking W-O bonds to the WO,/W interface and
the oxygen-vacancy CF is formed. The device reached
to LRS. During reset, oxygen ions were migrated from
the WO,/W interface to the WOj; layer as well as the
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CF is oxidized and the device reached to HRS. The
SCLC [31] was observed at the low bias regions for all
the devices.

9804 V2

/ 813

(1)

where ] is the current density, ¢, is the relative permittiv-
ity of the insulating material, &y (8.85 x 10712 F/m) is the
permittivity of free space, u is the electron mobility, and
L is the thickness of the switching layer. From the above
equation, [-V curves in both positive (+ve) and negative
(-ve) bias regions were plotted in In(I) vs. In(V) scale
(Fig. 4). The SCLC fittings consist of an ohmic region
(I a V) with slope values from 1.05 to 1.3 and Child’s
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law region (I a V?) with slope values from 1.9 to 2.17
for both HRS and LRS. The slope value of the S1 de-
vices is slightly higher (1.3) than unity, but the S2 and
S3 devices have close to unity. The reason behind this
is the number of defects was decreased after port-metal
annealing treatment. Therefore, the S1 devices followed
the trap-charge controlled (TC) SCLC whereas the S2
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and S3 devices followed SCLC at low bias regions in both
HRS and LRS. At the higher bias region of the HRS and
LRS, the F-N tunneling equation [31, 32] is below:

jo TF exp{‘sn(zqm*—)z ‘i’%} (2)

~ 8nhqdy SWE B

where /1 (6.62 x 102*J s) is Plank’s constant, ¢ is electronic
charge (1.6 x 107 Q), m* is the effective electron mass,
and E is the electric field. From F-N tunneling, In(J/E?)
was plotted as a function of 1/E. Figure 5a, b shows the
E-N tunneling fitting at the +ve and -ve regions for
both HRS and LRS. The critical electric field (E,) values
at HRS for set were 3.03, 3.57, and 2.7 MV cm™' and
those values after reset were 3.7, 5, and 3.5 MV cm ™
for the S1, S2, and S3 devices, respectively. It is inter-
esting to note that the F-N tunneling is also observed
at LRS because of the oxygen-rich layer formed at the
WO,/W TE interface, which is reported here for the
first time. The E, values of LRS for the positive region
were 2.7, 2.7, and 3.7 MV cm™! and those values before
reset were 2.7, 3.5, and 4 MV cm ™! for the S1, S2, and
S3 devices, respectively. This confirmed that the trans-
port mechanism of both LRS and HRS at the high field
regions was dominated by F-N tunneling. A minimum
E, value was found to be 2.7 MV cm ™ from all the de-
vices, which was also higher than the reported value of
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2.6 MV cm™" [33]. The slope of the F-N fitting curve
(Fig. 5) and the value of @3 can be calculated by using
the equation below:

3\ ¥%  s¥/3
s = (8_n> W (3)

where S is the slope of the fitted line (black dotted lines).
The @p values at HRS for the +ve and —ve sides were
0.25/0.56, 0.31/1.03, and 0.28/0.63 €V, while those values
at LRS were 0.11/0.10, 0.21/0.28, and 0.25/0.29 eV for
the S1, S2, and S3 devices, respectively. All devices
showed lower @p in the positive bias region than the
negative bias region owing to a higher work function of
oxidized W (or WO,) than the pure W metal (4.91 eV
[34] vs. 4.6 eV [19]). The barrier height (@p) values of
electrons in HRS for the S2 devices were higher than
those of the S1 and S3 devices. This is because of the an-
nealing out of defects from the switching layer at 400 °C.
At an annealing temperature of 500 °C, both @y values
for the S3 devices were the lower either because of N
incorporated into the WO, layer or the reduction of
oxygen and inter-diffusion of W into the WO; layer
[35, 36], which can also help lower the operation volt-
age to 4 V (Fig. 3). The S3 devices had the benefit of a
higher non-linearity factor (1), which will help reduce
the sneak paths for crossbar array applications [24]. The #
is defined as 7 = (I at V,)/( at 1/2 V,). The values of # for
the S1, S2, and S3 devices were found to be 5.2, 8.6, and
8.8, respectively. Therefore, we can define the -1 Vto 1V
region as the unselected region and the higher voltage
region as the selected region, as shown in Fig. 3. This
non-linearity resulted from the presence of the WOs/
WO, bilayer concept in the W/WO3/WO,/W simple
structure. In addition, the S3 devices showed stable data
retention of >10° s at a high read voltage of 0.5 V (not
shown here). However, CF formation/rupture into the
WO3/WO, bilayer needs to be explored further, which
is discussed below.

The oxygen ion migration under external bias, oxygen-
rich layer formation at the WO,/W TE interface during
set, and larger dissolution gap during reset show the re-
sistive switching characteristics. The transport charac-
teristics are controlled by SCLC at the low bias region
and F-N tunneling at higher bias regions for all the
devices. Due to oxygen-rich layer formation at LRS, the
E-N tunneling is observed, and after reset at the max-
imum value of negative voltage (-5, -6, and -4 V for
the S1, S2, and S3 devices, respectively), the electrons
had enough energy to F-N tunnel through the dissol-
ution gap. By using Egs. (1) and (2) of SCLC and F-N
tunneling and using above parameters, the I-V characteris-
tics except reset regions were simulated using MATLAB
as a simulation tool. Well-fitted I-V with experimental
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curve for all devices is shown in Fig. 7a. The input value
of &, was considered as 5 [37]. The u value through the
WO; layer was considered approximately 10> cm® V™' 577,
which is close to the reported value of 5 x 107> cm?® V™" s+
[38]. The @p values obtained from Eq. (2) were considered
as those were. The value of effective mass was taken as
0.7 x myg, which is close to the reported value (in the range
of 0.7 x mg to 1.2 x mg [39]). A similar conduction mech-
anism was also reported by Kim et al. [40] and Ban and
Kim [41] for different structures with switching materials.
The reset regions of the S1, S2, and S3 devices were —2.5
to -5V, -2.8 to -6 V, and -2.1 to -4 V, respectively (i.e.,
red symbols in Fig. 3). The I-V curves of reset regions
were simulated by MATLAB using drift diffusion, current
continuity, and Joule heat equations [31]. The oxygen-
vacancy flux can be written as the sum of diffusion flux
(/p) and drift flux (/). So total current (Jioa1) is equal to:
Jp +J4=- DVnp + vnp, which is evaluated by:

al’lD -

= = V.(DVnp-vnp) (4)
VoVy =0 (5)
~VkuVT = o |Vy|? (6)

where np, is the V; concentration; ¢ is the time; D [:O.Sazf
exp(-Ua/kgT)] is the diffusivity; v [afexp(-U4/kgT)sinh
(qaElkgT)] is the drift velocity of oxygen vacancy; f'is the
attempt frequency (10" Hz [42]); U, is the activation
potential of 1 eV, which is similar to the reported values
(~1 eV [43]); and a is the hopping distance of 0.5 nm,
which is similar to our previous reported value (0.56 nm
[44]). At zero bias condition, the value of U, was high. As
the voltage was increased, the value of U, became lower.
The electrical conductivity (o) is given by Arrhenius
equation: o =0y exp(—Eac/kgT), where oy is the pre-
exponent constant and E,c is the activation energy.
The E,c value changes from 0.01 to 0.03 eV, and it is
decreasing with increasing value of oxygen-vacancy
density (np), which is similar to the reported value of
0.06 eV [45]. Both the values of ¢, (WO3=1.5x
10> Q7' m™" [46]; WO, =7 x 10" Q" m™" [47]) and ky,
(WO3=02Wm™" K W=173 Wm™" K" [19]) varied
linearly with the conductivity of WO3; to W, and y was
the potential. The value was taken to best fit with the
experimental curve. Now we solved Egs. (4)—(6) simultan-
eously with the help of MATLAB to obtain the profiles of
np and T with different negative voltages. Consequently,
I-V reset curves were obtained. The experimental and
simulated I-Vs were given in Fig. 6a. The simulated I-V
curves matched quite well with the experimental data.
From this simulation, the thickness of the WOj3 layer was
determined to be 4 nm for all structures but the thick-
nesses of the oxygen-rich WO,/W TE interface under set
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were determined to be 4, 4.5, and 3.5 nm for the S1, S2
and S3 devices, respectively. These thicknesses were
also used to calculate E in Fig. 5a, b. The cylindrical CF
diameter was approximately 34 nm, which is useful for
nanoscale non-volatile crossbar array applications. Similar
CF diameter of 10-30 nm in a Pt/NiO/Pt structure at a
CC of 1 mA was reported by Yun et al. [48]. Yao et al. [49]
reported a <1-nm filament diameter in a Au/a-C/SiO,/
a-C/Au structure with operation current of ~50 pA.
Song et al. [50] reported about a 70-nm filament diameter
in a Pt/TiO,/Pt structure with a CC of 10 mA. Waser and
Aono [51] reported an ~12-um-diameter filament in a
Cr-doped SrTiOj3 single crystal cell with 5-mA current.
Celano et al. [13] reported about a 28-nm CF diameter
using a Cu/Al,O3/TiN structure at a CC of 10 pA.
Yazdanparast et al. [52] reported the 70-nm CF diam-
eter using a Au/Cu,O3/Au structure at a CC of 10 mA.
According to our previous report [3], the CF diameter
is approximately 70 nm in a Cu/GeO,/W structure at a
CC of >1 mA. A larger diameter of 2 pm using a Pt/
CuO/Pt structure was reported by Yasuhara et al. [53].
In addition, the variation of oxygen-vacancy density
profiles (np) with thickness for both the set and reset
for all devices are given in Fig. 6b. The value of np at

the CF is 1 x 10*> cm™>, and the CF was assumed to be
broken if the concentration was below 0.5 x 10** ¢cm ™2,
There is an oxygen-rich layer at the WO,/W TE interface
under set. The dissolution gap in reset for the devices
showed that the device annealed at 500 °C had the smal-
lest gap among the three devices, which was responsible
for the lowest set/reset voltage and @p value. Figure 6¢
shows the E (=dy/dx) distributions for the S1, S2, and S3
devices after set (or at LRS). After maximum reset volt-
ages of -5, -6, and -4 V for the S1, S2, and S3 devices,
respectively, the E distribution along the CF is shown in
Fig. 6d. By solving Egs. (4) and (5) for y and np, the E pro-
files were obtained. According to the E values at LRS
along the CF and after reset (Fig. 5), this shows F-N tun-
neling (>2.7 MV cm™"). Typical color maps of 7y, for the
S3 devices during set and reset are shown in Fig. 7. The
oxygen-rich layer at the WO,/W TE interface with a
thickness of 3.5 nm was observed at LRS, and the dissol-
ution gap in the CF ruptured region was approximately
7.5 nm. Basically, oxygen ion migration under external
bias controls the interfacial oxygen-rich layer and dissol-
ution gap as well as the lower and higher barrier heights
which lead to LRS and HRS switching, as shown in energy
band diagram under bias (Fig. 7). Comparing all devices,
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the devices annealing at 500 °C showed higher non-
linearity factor with lower operation voltage, and stable
data retention at a high read voltage of 0.5 V, which will
have the potential for nanoscale non-volatile memory
applications. In addition, the I-V switching characteris-
tics using transport and hopping conductions have been
simulated using a new and simple concept, which will
also help to analyze other resistive switching memory
devices in future.

Conclusions

In conclusion, post-metal annealing effects on the forming-
free resistive switching behavior of the W/WO3;/WO,/W
structure were observed, especially F-N tunneling at
LRS and after reset was observed for the first time. The
WO3/WO, layer was confirmed by TEM and XPS. The
RRAM devices annealed at 500 °C had a lower operation
voltage, thinner WO,/W TE interface, lower barrier height,
and stable data retention. A simulation based on SCLC
conduction in the low field, F-N tunneling in the high field
for both HRS and LRS, and oxygen-vacant CF with a diam-
eter of ~34 nm was developed for all non-linear I-V switch-
ing characteristics, which will be very useful to understand
the switching mechanism for other RRAM structures and
for selector-less nanoscale crossbar architectures.
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